Abstract

We have characterized Zn1−xCoxO (x=0.25) films grown on sapphire (0001) substrates by pulsed laser deposition using various growth conditions to investigate the growth condition dependence of properties of Co-doped ZnO films. The substrate temperature (TS) was varied from 300 to 700 °C and the O2 pressure (PO2) from 10−6 to 10−1 Torr. When TS is relatively low (≲600 °C), homogeneous alloy films with a wurtzite ZnO structure are grown and predominantly paramagnetic, whereas inhomogeneous films of wurtzite ZnO phase mixed with rock-salt CoO and hexagonal Co phases form when TS is relatively high and PO2 is fairly low (≲10−5 Torr). The presence of Co clusters leads to room temperature ferromagnetism in inhomogeneous films. The temperature dependence of the magnetization for the homogeneous Zn1−xCoxO (x=0.25) films shows spin-glass behavior at low temperature and high temperature Curie–Weiss behavior with a large negative value of the Curie–Weiss temperature, indicating strong antiferromagnetic exchange coupling between Co ions in Zn1−xCoxO. We have found that Co can be dissolved in ZnO over 40% under an optimum growth condition of TS=600 °C and PO2=10−5 Torr, where epitaxial homogeneous Zn1−xCoxO (x=0.25) films of the best crystalline quality are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.