Abstract

Fe3O4 is a ferrimagnetic spinel ferrite that exhibits electric conductivity at room temperature (RT). Although the material has been predicted to be a half metal according to ab-initio calculations, magnetic tunnel junctions (MTJs) with Fe3O4 electrodes have demonstrated a small tunnel magnetoresistance (TMR) effect. Not even the sign of the tunnel magnetoresistance ratio has been experimentally established. Here, we report on the magnetic properties of epitaxial Fe3O4 films with various crystal orientations. The films exhibited apparent crystal orientation dependence on hysteresis curves. In particular, Fe3O4(110) films exhibited in-plane uniaxial magnetic anisotropy. With respect to the squareness of hysteresis, Fe3O4 (111) demonstrated the largest squareness. Furthermore, we fabricated MTJs with Fe3O4(110) electrodes and obtained a TMR effect of −12% at RT. The negative TMR ratio corresponded to the negative spin polarization of Fe3O4 predicted from band calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.