Abstract

Magnetic properties of cylindrical Ni80Fe20 nanowires with modulated diameters are investigated theoretically as a function of their geometrical parameters and compared with those produced inside the pores of anodic alumina membranes by pulsed electrodeposition. We observe that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall. The system begins generating vortex domains in the nanowire ends and in the transition region between the two segments to minimize magnetostatic energy generated by surfaces perpendicular to the initial magnetization of the sample. Besides, we observed an increase of the coercivity for the sample with equal volumes in relation to the sample with equal lengths. Finally, the interaction field is stronger in the case of constant volume segments. These structures could be used to control the motions of magnetic domain walls. In this way, these nanowires with modulated diameters can be an alternative to store information or even perform logic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.