Abstract

Gadolinium, a rare earth metal, is ferromagnetic, while Mn, a transition metal atom, is antiferromagnetic in the bulk phase. Clusters of these elements, however, share some common properties; both exhibit ferrimagnetic behavior and maintain magnetic moments close to their free atomic value. Using density functional theory and generalized gradient approximation for exchange and correlation, we have studied the magnetic properties of bimetallic clusters composed of Gd and Mn to see if they show unusual behavior. The coupling between Gd and Mn spins is found to be antiferromagnetic, while that between Mn atoms is ferromagnetic. Moreover, the bonding between Gd and Mn atoms is stronger than that between the Gd atoms or Mn atoms, thus enabling the possibility of creating more stable magnetic particles. A systematic study of the magnetic and binding properties of clusters composed of Gd atom and other transition metal atoms such as V, Sc, Ti, Cr, Fe, and Co is also carried out to probe the effect of 3d-orbital occupation on magnetic coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call