Abstract

The field and temperature dependences of magnetization and the temperature dependences of the initial magnetic susceptibility have been theoretically studied for three crystallographic directions in a trigonal NdFe3(BO3)4 antiferromagnetic crystal. The calculations were performed using a molecular field approximation and a crystal field model for the rare-earth subsystem. The obtained theoretical expressions are applied to the interpretation of recent experimental data [1–4] on the magnetic properties of NdFe3(BO3)4. The results of calculations show a good agreement with experiment. The proposed theory adequately describes (i) anomalies of the Schottky type in the temperature dependence of the magnetic susceptibility, (ii) nonlinear curves of magnetization in the basal plane in a magnetic field up to 1 T (showing evidence of the first-order phase transitions) and their evolution with the temperature, and (iii) the field and temperature dependences of magnetization in a magnetic field up to 9 T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call