Abstract

In a systematic study of the (Pr1−xTix)Fe5 alloy series, the (Pr0.65Ti0.35)Fe5 alloy has been found to have a dominant phase with either the rhombohedral Th2Zn17 structure or the newly discovered Nd2(Fe,Ti)19 (S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the Seventh International Symposium on Magnetic Anisotropy and Coercivity in R-T Alloys, Canberra, July 1992, p. 437) structure, depending on the annealing procedure. Powder-x-ray-diffraction patterns and scanning electron microscopy show that the sample annealed at a temperature of 850 °C followed by 1000 °C has the 2:17 structure whereas annealing at 1000 °C directly leads to the new 2:19 structure. Energy-dispersive x-ray analysis yields Pr:Fe:Ti ratios of 10.7:86.2:3.1 for the Pr2(Fe,Ti)17 phase and 9.2:85.9:4.9 for the Pr2(Fe,Ti)19 phase. 57Fe Mössbauer spectroscopy (at 295 K) gives values for the average 57Fe hyperfine field of 15.7 T for the 2:17 phase and 17.5 T for the 2:19 phase, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.