Abstract

The magnetic properties of γ-Fe2O3 nanoparticles synthesized by vaporization condensation in a solar image furnace have been studied using both magnetic measurements and Mössbauer spectroscopy. The mean size of the particles turns out to be easily controlled by changing the pressure conditions in the growth chamber. The particles exhibit superparamagnetic behavior at room temperature. Magnetic measurements show the appearance of magnetic hysteresis in the low-temperature range and from the evolution with temperature of the ferromagnetic ratio, MR/MS, we have determined the distribution of the blocking temperatures for the smallest particles that is fitted to a log-normal distribution leading to a mean blocking temperature 〈TB〉=38±15 K. The size distribution of the magnetic unit is also determined from this fitting, as well as from the Mössbauer spectra, obtaining a mean particle volume of about 3.5×105 Å3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.