Abstract

A method is presented for synthesizing core–shell nanoparticles with a magnetic core and a porous shell suitable for drug delivery and other medical applications. The core contains multiple γ-Fe2O3 nanoparticles (∼15 nm) enclosed in a SiO2 (∼100–200 nm) matrix using either methyl (denoted TMOS-γ-Fe2O3) or ethyl (TEOS-γ-Fe2O3) template groups. Low-temperature Mössbauer spectroscopy showed that the magnetic nanoparticles have the maghemite structure, γ-Fe2O3, with all the vacancies in the octahedral sites. Saturation magnetization measurements revealed that the density of γ-Fe2O3 was greater in the TMOS-γ-Fe2O3 nanoparticles than TEOS-γ-Fe2O3 nanoparticles, presumably because of the smaller methyl group. Magnetization measurements showed that the blocking temperature is around room temperature for the TMOS-γ-Fe2O3 and around 250 K for the TEOS-γ-Fe2O3. Three dimensional topography analysis shows clearly that the magnetic nanoparticles are not only at the surface but have penetrated deep in the silica to form the core–shell structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.