Abstract

First-principles calculations based on density functional theory within the general gradient approximation (GGA) are performed to study the electronic structure and magnetic properties of Pd doped ZnS. It is found that an isolated Pd atom doped 2 × 2 × 2 ZnS supercell shows half-metallic ferromagnetic character with a total magnetic moment of 2.0μB per supercell, which is significantly enhanced compared with the pure ZnS supercell. The strong ferromagnetic coupling of the local magnetic moments can be explained in terms of strong hybridisation between Pd-4d and S-3p states. The hybridisation between Pd and the neighbouring S atoms leads to a strong coupling chain Pd(4d)-S(3p)-Zn(3d)-S(3p)-Pd(4d), which induces strong indirect long range FM coupling between Pd dopants. The results of several doping configurations demonstrate that ferromagnetic coupling exists between the two doped palladium atoms. These results suggest that Pd doped ZnS can also be considered as suitable candidates for exploring new half-metallic ferromagnetism in semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.