Abstract
The transition-metal based alloy MnFe4Si3 not only is a potential candidate for room temperature magnetocaloric applications, but also shows a large magnetic anisotropy forming an interesting case study in the search for rare-earth free permanent magnets. However, former polycrystalline and single crystal studies led to major disagreements about the order of the magnetic transition and the magnetocrystalline anisotropy scheme, which are two essential points for the understanding of this alloy. Here, magnetic, magnetocaloric properties and the magnetic anisotropy of MnFe4Si3 (Mn~0.86Fe~4.24Si~2.90) are investigated on a high quality single crystal grown by flux method, and compared to polycrystalline materials. Using the recently proposed criterion of field dependence of the magnetocaloric effect, we show that the ferromagnetic transition is more likely to be of second order, which is fully compatible with the absence of thermal hysteresis at the ferromagnetic transition in the present MnFe4Si3 crystal. The c axis is confirmed to be the hard magnetic axis, both in single crystal and polycrystalline MnFe4Si3, and a large, dominant, K1 anisotropy constant (~−2.5 MJ m−3) is found at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.