Abstract

By making use of high-temperature series expansions (HTSE) of the correlation functions, we study the thermal and disorder variation of the short-range order (SRO) in the particular B-spinel ZnCr2xAl2−2xS4. We developed the HTSE for the q-dependent static structure factor S(q) to the order 6 in reciprocal temperature including both the nearest- and next-nearest-neighbour interactions J1 and J2, respectively. Respecting the experimental fact that the broad diffuse peak of the neutron is situated at the particular wave vector q0=[000.79] and is insensitive to the temperature for a given ratio of dilution x, we have estimated the thermal variation of J1 and J2 in the case of the pure compound.The bond percolation threshold xp of the ZnCr2xAl2−2xS4 is determined by studying the disorder variation of the correlation length ξ. The xp is considered as the concentration at which ξ vanishes. The obtained values are xp=0.27 when only J1 is considered and 0.23 when both J1 and J2 are taken into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.