Abstract

Two kinds of nickel nanoparticles—carbon encapsulated Ni nanoparticles Ni(C) and pure Ni nanoparticles coated with NiO layers Ni(O) are successfully prepared. Structural characterizations (HR-TEM, SAED, and XRD) reveal their distinct morphological properties. Magnetization measurements for the assemblies of two kinds of Ni nanoparticles show a larger coercivity and remanence by a deviation between the zero-field-cooled and the field-cooled magnetization below the irreversibility temperature, T irr, for the assemblies of Ni(O) particles. This deviation may be explained as a typical nanocluster–glass behavior (collective behavior) due to ferromagnetic dipole–dipole interaction effects among the assemblies of Ni(O) particles. However, Ni(C) particles exhibit modified superparamagnetic properties above the average blocking temperature of T B, which is determined to be around 115 K at 1000 Oe. Moreover, a gradual decrease in saturation magnetization is observed, which is attributed to the nanocrystalline nature of the encapsulated particles, coupled with possible carbon solution in Ni nanocrystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.