Abstract
We have separately assessed the contributions of isolated Fe3+ ions and the ferrimagnetic subsystem to the total magnetization of an aligned magnetite (Fe3O4) nanowire array grown in pores of an anodized alumina membrane and evaluated the magnetic anisotropy field of the nanowires, which has been found to be an order of magnitude weaker than the expected shape anisotropy field. The reduction in magnetic anisotropy in the nanowires can be accounted for by dipole–dipole interaction between individual nanowires in the array. In electron spin resonance spectra of the nanowires, we have identified a phase-inverted line, corresponding to their microwave magnetoresistance. The Verwey transition in the magnetite nanowires has been shown to be suppressed due to deviations from stoichiometry and size effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.