Abstract

Noncollinear antiferromagnetic Mn3Sn films have received much attention due to their potential applications in antiferromagnetic spintronic devices. In this work, single-phase polycrystalline antiferromagnetic Mn3Sn thin films were successfully prepared by magnetron sputtering. The defects in the thin films were regulated by adjusting the sputtering power. The relationship among the films structure, the anomalous Hall effect (AHE) and the defects was investigated. High defect concentration in the Mn3Sn films led to large room temperature ferromagnetic moments. The maximum saturation magnetization reached up to ~ 16 kA·m−1 (36 mμB/Mn), which was much larger than the values reported in literatures. The coercive field of 38 mT was obtained in a high-quality Mn3Sn film, which effectively reduced the flipping magnetic field. Moreover, the anomalous Hall resistance and coercive field of the Mn3Sn films prepared on the ferroelectric substrates were manipulated through an applied electric field, indicating that the piezoelectric stress has a great influence on the nonzero Berry curvature of the triangular spin structure in the antiferromagnetic materials. These results will promote the potential application of Mn3Sn in high-density and low-power antiferromagnetic spintronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call