Abstract

Magnetic nanoparticles of ε-Fe1.76Ga0.24O3 were prepared by thermal treatment of a mesoporous silica matrix impregnated with nitrates. The chosen Ga-doping enhanced magnetization and suppressed the low-temperature spin-reorientation transition typical for ε-Fe2O3. Despite the small mean size of 11 nm, the nanoparticles were in the blocked state over the whole temperature range under study, unlike standard superparamagnetic contrast agents based on other iron oxides or ferrites. The role of Ga-doping in local magnetic properties of the epsilon polymorph of ferric oxide was probed by 57Fe Mössbauer spectroscopy. The particles were further coated with silica and their performance in MRI was tested both in relaxometry and ultra-high-field imaging. The obtained dependences of relaxivity on temperature and thickness of the coating were placed in the context of relevant theoretical models of particle-induced relaxation – motional averaging and static dephasing regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.