Abstract

The conversion of metal–organic frameworks (MOFs) to porous carbon has attracted extensive attention for developing multifunctional adsorbent materials. Herein, we demonstrated a facile method to prepare magnetic porous carbon via calcinating MIL-101(Fe) precursor loaded with glucose at 700 °C in an N2 atmosphere. The obtained magnetic porous carbon (MPCG) contained plenty of oxygen-containing functional groups and exhibited an enlarged specific surface area (177.7 m2/g) compared with its precursor (41.2 m2/g). In addition, MPCG can be easily separated from the matrix by a magnet. Benefitting from these advantages, the magnetic porous carbon exhibited high affinity toward four synthetic organic dyes (amaranth, ponceau 4R, sunset yellow, and lemon yellow) in an aqueous solution. Moreover, the adsorbent can be applied to quantitatively detect synthetic organic dyes in drinks coupled with chromatography. A new magnetic solid-phase extraction method for dye analysis yielded reasonable linearity (r □ 0.99), low limits of detection (0.047–0.076 μg/L), and good precision within the analyte concentration range of 0.25–50 μg/L.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.