Abstract

The microstructure evolution in several polycrystalline Ni0.6Zn0.4Fe2O4 samples as a result of a sintering scheme was studied in detail, in parallel with the changes in their magnetic properties. The Ni0.6Zn0.4Fe2O4 toroidal sample was prepared via mechanical alloying and subsequent molding; the sample with nanometer-sized compacted powder was repeatedly sintered from 600 to 1200 °C with an increment of 25 °C. An integrated analysis of phase, microstructural and hysteresis data pointed to existence of three distinct shape-differentiated groups of B–H hysteresis loops which belong to samples with weak, moderate and strong magnetism (Idza in Mater. Res. Bull. 47:1345–1352, 2012), respectively. The real permeability, μ′, and loss factor, μ″, increased with grain size which increased due to increase in sintering temperature and these two magnetic properties also seem to belong to three value-differentiated groups corresponding to the same temperature ranges found for the B–H groupings. These groupings are tentatively explained using Snoek’s Law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.