Abstract

We use density matrix renormalization group to study the first-order quantum phase transition induced by a magnetic field $h$ in a frustrated ferrimagnetic chain. The magnetization ($m$) curve as a function of $h$ presents a macroscopic jump and the energy curve as a function of $m$ has two global minima. We characterize the two competing phases and study the phase-separated states in the coexistence region. Also, we observe that the transition is accompanied by an increase in the number of itinerant singlet pairs between sites in the unit cells of the chain. Finally, we identify the critical point at the end of the first-order transition line and a crossover line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.