Abstract

There have been extended studies on the appearance of ferromagnetism in transition-metal–metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD alloys upon the introduction of Fe where MD can represent a combination of various metalloid elements, while keeping the metal/metalloid ratio constant. It has been reported that adding a sufficient amount of Fe to a Pauli PM Ni-MD alloy matrix first induces a spin-glass (SG) state at low temperatures which goes over to a PM state at higher temperatures. Beyond a certain Fe content, xc, the SG state transforms to a FM state upon increasing the temperature. By plotting the characteristic transition temperatures as a function of the Fe content, a magnetic phase diagram can be constructed for each Ni-Fe-MD system which has a multicritical point (MCP) at xc. By using the reported magnetic phase diagrams of various Ni-Fe-MD alloy systems, it is shown that the critical Fe content, xc scales inversely with the density of states at the Fermi level, N(EF), of the parent Ni-MD matrix. This means that the higher the N(EF), the lower the critical Fe content to induce ferromagnetism in the Ni-MD matrix. This is then discussed in terms of the Stoner enhancement factor, S, which characterizes the tendency of the matrix to become ferromagnetic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call