Abstract

The magnetic behavior of Co 1− x Mn x (SCN) 2(CH 3OH) 2 has been studied by DC magnetization and susceptibility measurements on mixtures spanning the complete composition range. The pure components are a quasi-two-dimensional Heisenberg antiferromagnet (Mn system) and a three-dimensional Ising antiferromagnet (Co system). The crystal structure of the cobalt constituent is determined, and is closely related to that of the manganese constituent. Competing orthogonal spin anisotropies should occur in mixtures, and frustration effects arising from competing ferromagnetic and antiferromagnetic interactions may also arise. The Curie and Weiss constants, in χ M= C/( T− θ), vary regularly with composition. C versus x is essentially linear while θ versus x shows a definite curvature, analysis of which reveals that the unlike-ion exchange interaction is antiferromagnetic and stronger than the like-ion interactions. The magnetic susceptibility is field dependent, more markedly so with increasing x. Plots of M/ H versus T exhibit maxima at low temperatures only for mixtures substantially richer in cobalt than manganese. Magnetic transition temperatures are estimated from these data. Magnetization versus field isotherms evolve with composition and with temperature; those for x=0.24 5 and 0.16 9 exhibit S-shapes for temperatures at or below the identified transitions. The nonlinear susceptibility versus temperature for x=0.24 5 displays structure but does not diverge. The temperature dependence of the thermoremanent magnetization (TRM) for x=0.24 5 shows characteristic features but does not follow any simple form. The time-dependence of the TRM is fitted at a series of temperatures employing a stretched exponential decay form. The thermal variation of the fit parameters is systematic and suggests that temperatures just below 3 K and slightly above 6 K have special significance. Over a limited temperature range the TRM is found to scale approximately as T log 10(t/τ 0) , with τ 0≈10 −12 s. Strong and weak irreversibility lines are determined for x=0.24 5; both vary as τ g∝ h 0.56, with zero-field temperatures of T s(0)=5.5 5 K and T w(0)=9.8 5 K, respectively. The exponent is closer to that recently predicted (0.53) for a short-range three-dimensional Ising spin glass than to the value 2/3 of the DeAlmeida–Thouless line in the infinite range mean-field Ising model. The existence of strong random anisotropy may account for the presence of a weak irreversibility line with the observed exponent. The T– x magnetic phase diagram exhibits a crossing of paramagnetic-ordered state phase boundaries and an associated tetracritical point at x≈0.20 5 and T≈2.6 0 K. Spin glass properties are apparent for compositions close to the tetracritical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.