Abstract

We theoretically provide a magnetic phase diagram for the single-layer (SL) CrBr3, which could be effectively tuned by both strain engineering and charge doping in SL-CrBr3. Through systematical first-principles calculations and Heisenberg model Hamiltonian simulations, three different magnetic phases in SL-CrBr3, which are off-plane ferromagnetic, in-plane ferromagnetic and in-plane Néel-antiferromagnetic phases, are found in the strain and charge doping regimes we studied. Furthermore, our results show that higher order Heisenberg exchange parameters and anisotropy exchange parameters should be taken into account for accurately illustrating the magnetic phase transition in SL-CrBr3. As a result, we find from the SpinW simulation that the Curie temperature is about T c = 38.4 K, which is well consistent with the experimental result 34 K [Nano Lett. 19 3138 (2019)]. The findings here may be confirmed in future experiments, and may be useful for the potential applications of SL-CrBr3 in spintronics field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.