Abstract

We report the role of Al substitution in the magnetic properties of spinel CoCr2O4 by means of temperature dependent dc and ac magnetization and heat capacity measurements. Various compositions (0.0 ≤ x ≤ 1.0) of polycrystalline Co(Cr1-xAlx)2O4 samples have been prepared by sol-gel processing and their crystal structure was investigated by X-ray diffraction which was found to crystallize in the normal cubic spinel structure. For x ≤ 0.1, the system exhibits multiple magnetic orderings (long range ferrimagnetic ordering TC, spin-spiral ordering TS, and lock-in transition TL), similar to that of the parent compound, CoCr2O4. However, all the compositions between x = 0.1 and 0.5 exhibit long range ferrimagnetic ordering below TC and also a short range order at low temperature. Spin-glass like ordering was noticed between x = 0.6 and 0.8 due to the diluted B-site occupancy, whereas the end compound CoAl2O4 (x = 1.0) shows antiferromagnetic behavior. On the basis of these results, we propose a magnetic phase diagram for the Co(Cr1-xAlx)2O4 series as a function of the Al content (x) and measuring temperature (T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.