Abstract
We demonstrate that the magnetic properties of diluted magnetic semiconductors are dominated by short ranged interatomic exchange interactions that have a strong directional dependence. By combining first principles calculations of interatomic exchange interactions with a classical Heisenberg model and Monte Carlo simulations, we reproduce the observed critical temperatures of a broad range of diluted magnetic semiconductors. We also show that agreement between theory and experiment is obtained only when the magnetic atoms are randomly positioned. This suggests that the ordering of diluted magnetic semiconductors is heavily influenced by magnetic percolation, and that the measured critical temperatures should be very sensitive to details in the sample preparation, in agreement with observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.