Abstract
Magnetic particle imaging (MPI) is a new imaging modality with the potential for high-resolution imaging while retaining the noninvasive nature of other current modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET). It is able to track location and quantities of special superparamagnetic iron oxide nanoparticles without tracing any background signal. MPI utilizes the unique, intrinsic aspects of the nanoparticles: how they react in the presence of the magnetic field, and the subsequent turning off of the field. The current group of nanoparticles that are used in MPI are usually commercially available for MRI. Special MPI tracers are in development by many groups that utilize an iron-oxide core encompassed by various coatings. These tracers would solve the current obstacles by altering the size and material of the nanoparticles to what is required by MPI. In this review, the theory behind and the development of these tracers are discussed. In addition, applications such as cell tracking, oncology imaging, neuroimaging, and vascular imaging, among others, stemming from the implementation of MPI into the standard are discussed. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1659-1668.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.