Abstract

The Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl consists of molecular dimers arranged on an anisotropic triangular lattice. At low temperatures a pronounced dielectric anomaly is observed, and eventually a canted antiferromagnetic ground state forms. Optical spectroscopy clearly rules out charge imbalance and the existence of quantum electric dipoles with a dipolar-spin coupling. Here we suggest a novel form of spin–charge coupling where the prominent in-plane dielectric response in κ-(BEDT-TTF)2Cu[N(CN)2]Cl is explained by short-range discommensurations of the antiferromagnetic phase in the temperature range 30 K < T < 50 K, and by relaxation of charged domain walls in the ferromagnetic structure at lower temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.