Abstract

All metal objects support fluctuating currents that are responsible for evanescent-wave Johnson noise in their vicinity due both to thermal and quantum effects. The noise fields can decohere qubits in their neighborhood. It is quantified by the average value of $B(x,t)B(x',t')$ and its time Fourier transform. We develop the formalism particularly for objects whose dimensions are small compared with the skin depth, which is the appropriate regime for nanoscale devices. This leads to a general and surprisingly simple formula for the noise correlation function of an object of arbitrary shape. This formula has a clear physical interpretation in terms of induced currents in the object. It can also be the basis for straightforward numerical evaluation. For a sphere, a solution is given in closed form in terms of a generalized multipole expansion. Plots of the solution illustrate the physical principles involved. We give examples of how the spatial pattern of noise can affect quantum information processing in nearby qubits. The theory implies that if the qubit system is miniaturized to a scale $D$, then decoherence rates of qubits scale as $1/D$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.