Abstract
Bimetallic one‐dimensional cobalt–nickel magnetic nanowires capped on both sides with conical heads were synthesized using the polyol process. Then, the process was scaled up to produce magnetic nanowires in sample aliquots of approximately 20 g. The scale‐up strategy involved improving the mixing reagents using either axial or radial mixing configurations and was experimentally validated by comparing the structural and magnetic properties of the resulting nanowires. The results indicated a connection between the flow patterns and the size and shape of the nanowires. When a Rushton turbine was used, shorter nanowires with unconventional small heads were obtained. Because the demagnetizing field is strongly localized near or inside these heads, the coercive field was enhanced nearly twofold. These results were confirmed by micromagnetic simulations using isolated nanowires. In addition, the development of flow patterns at the small and pilot scales was predicted and compared using three‐dimensional turbulent computational fluid dynamics simulations. © 2014 American Institute of Chemical Engineers AIChE J, 61: 304–316, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.