Abstract

ABSTRACT The pollution of environmental systems with heavy metals is becoming a serious problem worldwide. These contaminants are one of the main issues in sludge (which is considered waste) and can even have harmful effects if the sludge is not treated properly. Thus, the development of a novel functional magnetic nanoadsorbent based on a derived lysine is reported here, which can be efficiently applied for metal removal from sludge. Magnetic nanoparticles were coated with silica layer and further modified by covalent bonding of derived lysine. The morphology of the nanomaterial, its nano-size and the silica layer thickness were analyzed by transmission electron microscopy. The successful silanization of the lysine derivative to the silica-coated magnetic nanostructures was investigated by several physicochemical characterization techniques, while the magnetic properties were measured with a vibrating sample magnetometer. The synthesized nanostructures were used as adsorbents for simultaneous removal of most critical heavy metals (Cr, Zn, Cu) from real complex sludge suspensions. The main practical adsorption parameters, pH of the native stabilized sludge, adsorbent amount, time, and adsorbent regeneration were investigated. The results show promising adsorption properties among currently available adsorbents (the total equilibrium adsorption capacity was 24.5 mg/g) from the sludge with satisfactory nanoadsorbent reusability and its rapid removal. The stability of the nanoadsorbent in the sludge, an important but often neglected practical parameter for efficient removal, was verified. This work opens up new possibilities for the development of high-quality magnetic nanoadsorbents for metal pollutants applied in various complicated environmental fields and enables waste recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.