Abstract

High intensity focused ultrasound (HIFU) has attracted great interest as a new energy-based technique to treat disordered tissues, such as tumors, through a hyperthermal mechanism using ultrasonic waves. However, long treatment times and collateral damage to healthy tissues due to high acoustic powers are still challenges for the clinical application of HIFU. One possible strategy to enhance the deposition efficiency of HIFU at the tumor site is to employ magnetic nanoparticles (MNPs) as ultrasound absorption agents for the thermal therapy. The objectives of the current study are threefold: (i) to examine the effects of MNP features, including the size and volume concentration, on the thermal mechanism of HIFU (ii) to investigate the performance of MNPs as they were exposed to ultrasound fields at different ranges of power and frequency (iii) and to study the interaction mechanism between MNPs and ultrasonic waves during the MNPs-enhanced HIFU process. To this end, we developed an ultrasound-guided HIFU system to conduct an in vitro experimental study on tissue phantoms containing MNPs of different sizes and volume concentrations. A set of HIFU parameters such as temperature rise and the rate of absorbed energy was monitored to examine the role of MNPs during the NPs-enhanced HIFU thermal procedure. Results showed that the MNPs significantly improved the thermal effect of HIFU by enhancing the rate of energy converted to heat and the temperature rise at the focal region. Moreover, it was demonstrated that the increase of MNP size and volume concentration greatly enhanced the HIFU parameters; the effects of MNPs were further improved by increasing the power and frequency of acoustic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call