Abstract

Thermotherapy, often called Hyperthermia treatment is a cancer treatment modality that involves raising the temperature of the tumor mass to over 315 K (42°C) for a specific duration, which leads to cell death through apoptosis or necrosis. Magnetic Particle Hyperthermia (MPH) is a non-invasive technique where magnetic nanoparticles are introduced into the tumor and then exposed to a magnetic field which convert magnetic energy into heat. Due to their high acidity, tumor cells are more sensitive to heat than healthy cells, meaning that heating the tumor to 315-319 K (42°C–46°C) can destroy it with minimal damage to the surrounding healthy tissues. During hyperthermia treatment, blood perfusion helps protect the healthy tissues around the tumor by dissipating excess heat. This paper presents a study where the temperature profiles within a spherical hepatic tumor mass are estimated by solving Pennes’ Bio-heat Equation, incorporating a power term. The study uses analytical methods to examine the effects of magnetic fluid hyperthermia treatment. Numerical illustrations are carried out using magnetite (Fe3O4) nanoparticles having an average diameter of 10.9 nm with mineral oil as a carrier liquid, subjected to magnetic fields of varying intensities. By analysing the model, the present work helps in designing an optimal treatment protocol by identify the time threshold of the therapy for varying magnetic field strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.