Abstract

Magnetic nanoparticles (MNPs) reveal promising opportunities for biomedical applications, potentially allowing minimally invasive diagnosis and therapeutic usage at several levels of human body organization (cells, tissue and organs). An increasingly broad collection of MNPs has been recently developed not only at the research level but also in some specific cases for medical applications. Superparamagnetic iron oxide (SPIO) nanoparticles are commonly used in clinical practice as contrast agents for magnetic resonance imaging (MRI) of liver and angiography. Carbon nanotubes (CNTs) are another type of nanomaterials with great potential for biomedical applications. Filled with ferromagnetic materials, an ensemble of aligned CNTs displays a highly non-linear, anisotropic and hysteretic magnetization behaviour due to their extremely high aspect ratio (length/diameter >100). The intrinsic properties of such ferromagnetic nanoparticles can potentially improve diagnosis and therapy of numerous diseases. Combining tailored biocompatible ferromagnetic nanomaterials with dedicated detection technology can provide a new approach leading to the exciting perspective of accurate medical imaging and medical therapy (magnetic hyperthermia, targeted drug delivery, etc.) at the cellular level. Elongated Fe-filled CNTs (Fe-CNTs) are foreseen as potential nanotools leading to minimally invasive, highly sensitive, and cost effective novel investigation routes for complete human body systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.