Abstract

CD95 (Fas) is a complex integral protein that can be expressed in many cells. It induces apoptosis when interacted with its ligand CD95L (FasL). However, cancer cells are resistant to CD95-induced apoptosis because of the changes in death domain (DD) of CD95 (procaspase-8 and c-Flip). In this study, magnetic nanoparticles and lipid-based gene transfection methods were performed to provide active Fas expression in breast cancer cells. Plasmid DNA (pDNA), which can express both human Fas and GFP, was transfected to MCF-7 breast cancer cells. Expression of c-FLIP and caspase-8 and effect of monoclonal antibody FasL for apoptosis stimulation were investigated. Also transfection success of methods and effects on surface protein were compared. Western blot results indicated that MCF-7 cells do not express caspase-8 but express large amount of c-FLIPL. Both lipid-based and magnetic nanoparticle-mediated gene transfection methods successfully applied. Caspase-8 apoptosis pathway was activated on transfected cells. Magnetic nanoparticle-mediated gene transfer is a successful non-viral method for transfection, and it does not affect the expression of other cell proteins, such as beta actin and lamin-B1. The raised c-FLIPL concentration in cytosol inhibits apoptosis. However, transfection of CD95-GFP-tagged pDNA significantly increases apoptosis by activating caspase-8 pathway. FasL interaction indicated a slight increase of apoptosis in the transfected cells. The method and pDNA applied in this study have potentials to be used in gene therapy for breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call