Abstract

In magnetic nanoparticle imaging, magnetic nanoparticles are coated and functionalized to bind to specific targets. After measuring their magnetic relaxation or remanence, their distribution can be determined by means of inverse methods. The reconstruction algorithm presented in this paper includes first a dipole fit using a Levenberg-Marquardt optimizer to determine the reconstruction plane. Secondly, a minimum norm estimate is obtained on a regular grid placed in that plane. Computer simulations involving different parameter sets and conditions show that the used approach allows for the reconstruction of distributed sources, although the reconstructed shapes are distorted by blurring effects. The reconstruction quality depends on the signal-to-noise ratio of the measurements and decreases with larger sensor-source distances and higher grid spacings. In phantom measurements, the magnetic remanence of nanoparticle columns with clinical relevant sizes is determined with two common measurement systems. The reconstructions from these measurements indicate that the approach is applicable for clinical measurements. Our results provide parameter sets for successful application of minimum norm approaches to Magnetic Nanoparticle Imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.