Abstract
The locomotion of droplets in emulsions is of practical significance for fields related to medicine and chemical engineering, which can be done with a magnetic field to move droplets containing magnetic materials. Here, we demonstrate a new method of droplet locomotion in the oil-in-water emulsion with the help of a nonuniform magnetic field in the case where magnetic nanoparticles (MNPs) are dispersed in the continuous phase of the emulsion. The paper analyses the motion of the droplets in a liquid film and in a capillary for various diameters of droplets, their number density, and viscosity of the continuous phase of the emulsion. It is established that the mechanism of droplet locomotion in the emulsion largely depends on the wettability of MNPs. Hydrophobic nanoparticles are adsorbed on the droplet surfaces, forming the agglomerates of MNPs with the droplets. Such agglomerates move at much higher velocities than passive droplets. Hydrophilic nanoparticles are not adsorbed at the surfaces of the droplets but form mobile magnetic clusters dispersed in the continuous phase of the emulsion. Mobile magnetic clusters set the surrounding liquid and droplets in motion. The results obtained in this paper can be used in drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.