Abstract

Herein we have developed a highly active, robust, and selective porous organic polymer (PPTPA-1, POP) encapsulated magnetically retrievable Pd-Fe3O4 nanohybrid catalyst in a one-step solvothermal route and investigated its catalytic performance in levulinic acid (LA) hydrogenation, a key platform molecule in many biorefinery schemes, to γ-valerolactone (GVL), employing formic acid as sustainable H2 source. The specific textural and chemical characteristics of as-synthesized nanohybrid materials were identified by XRD, XPS, FT-IR, 13C CP MAS NMR, HR-TEM, and FE-SEM with the corresponding elemental mapping and nitrogen physisorption studies. It was found that the nanohybrid Pd-Fe3O4/PPTPA-1 catalyst exhibited a substantially enhanced activity in comparison with the monometallic catalysts (Pd/PPTPA-1 and Fe3O4/PPTPA-1). Evidence of the electronic interaction between Pd and Fe attributable to the intrinsic hybrid synergistic effect is thought to be responsible for this superior catalytic performance and impro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.