Abstract

Magnetic nanocomposites consisting of iron oxide (hematite, α-Fe2O3) nanoparticles loaded into the pores of the periodically ordered mesoporous silica with hexagonal (SBA-15) or cubic (SBA-16) symmetry were investigated. The characterization of the samples was carried out by N2 adsorption/desorption, Small-angle X-ray scattering (SAXS), High-energy X-ray diffraction (HE-XRD) and HRTEM measurements. The magnetic properties of the prepared nanocomposites were investigated by the SQUID magnetometry. It was shown, that in spite of its non-magnetic nature the silica matrix significantly influences the magnetism of the samples. The magnetic properties are strongly affected by the strength of inter-particle interactions and dimensionality of the porous matrix. Weak dipolar interactions between superparamagnetic (SPM) hematite nanoparticles were observed in the nanocomposite with hexagonally ordered silica channels (α-Fe2O3@SBA-15), while the strong interactions between hematite nanoparticles, suggesting the superspin glass behavior (SSG), were observed in the nanocomposite with silica matrix of cubic symmetry (α-Fe2O3@SBA-16).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call