Abstract

Systems of small magnetic particles embedded in a nonmagnetic matrix were prepared by high energy ball milling. Besides carefully chosen milling conditions, in situ chemical reactions were used to control the properties of the product. Nanocomposites of iron particles in metal oxides (Al 2O 3 and ZnO), and magnetite particles in copper metal were prepared by reaction milling. The samples were characterized by X-ray diffraction and magnetic methods. A few hours of ball milling resulted in the completion of most chemical changes. Iron nanoparticles were formed with lattice strains of about 0.005; coercivities up to 400 Oe were achieved. The magnetization of the iron particles is 25–40% less than that expected for bulk iron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.