Abstract

The presence of high concentrations of arsenic species in drinking water and other water bodies has become one of the most critical environmental concerns. Therefore, decontamination of arsenic-containing water is essential for improved health and environmental concern. In recent years, nano-adsorbents have been widely used for the adsorptive removal of arsenic from water. Separating existing nano-adsorbents from treated waters, on the other hand, is a critical issue for their potential applications in natural water treatment. To address these issues and to effectively remove arsenic from water, researchers looked at iron oxide-based magnetic nanocomposite adsorbents. The magnetic nanoadsorbents have the benefit of surface functionalization, making it easier to target a specific pollutant for adsorption, and magnetic separation. In addition, magnetic nanoparticles have a large surface area, high chemical inertness, superparamagnetic, high magnetic susceptibility, small particle size, and large specific surface area, and are especially easily separated in a magnetic field. Magnetic nano-adsorbents have been discovered to have a lot of potential for eliminating arsenic from water. The recent advances in magnetic nano-absorbents for the cleanup of arsenic species from water are summarized in this paper. Future perspectives and directions were also discussed in this article. This will help budding researchers for the further advancement of magnetic nanocomposites for the treatment of water and wastewater contaminated with arsenic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.