Abstract

The aim of this study was to improve tumor-targeted therapy for breast cancer by designing magnetic nanobubbles with the potential for targeted drug delivery and multimodal imaging. Herceptin-decorated and ultrasmall superparamagnetic iron oxide (USPIO)/paclitaxel (PTX)-embedded nanobubbles (PTX-USPIO-HER-NBs) were manufactured by combining a modified double-emulsion evaporation process with carbodiimide technique. PTX-USPIO-HER-NBs were examined for characterization, specific cell-targeting ability and multimodal imaging. PTX-USPIO-HER-NBs exhibited excellent entrapment efficiency of Herceptin/PTX/USPIO and showed greater cytotoxic effects than other delivery platforms. Low-frequency ultrasound triggered accelerated PTX release. Moreover, the magnetic nanobubbles were able to enhance ultrasound, magnetic resonance and photoacoustics trimodal imaging. These results suggest that PTX-USPIO-HER-NBs have potential as a multimodal contrast agent and as a system for ultrasound-triggered drug release in breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call