Abstract

SmCo5 is an emerging perpendicular magnetic material for super-high density magnetic recording, due to its large magnetic anisotropy energy. In this paper, the magnetic moments of SmCo5−x Cu x have been studied using first principles calculation based on density-functional theory (DFT). Calculations are performed using the pseudopotential plane wave DFT code Vienna ab initio simulation package (VASP) with the projector augmented wave (PAW) method. The local density approximation LDA+U method is used for the calculation of the exchange correlation energy of Sm. The calculation results show that the average Co magnetic moment of SmCo5−x Cu x decreases with the increase of Cu doping concentrations, and the influence of the Cu doping on the spin state of Co is greater than that of Sm. The magnetic anisotropy energy of SmCo5 is analyzed. The electronic density of states and the differential in spin densities of atoms show that the spatial distribution of 4f electron and the 4f–3d coupling are the controlling factors of the magnetic anisotropy energy of SmCo5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.