Abstract
The scenario of the spin reorientation in two-dimensional films within first-order anisotropy approximation is theoretically studied by means of Monte Carlo simulations. The magnetic microstructure is investigated as a function of the ratio of the perpendicular anisotropy energy to the dipolar one. If the anisotropy dominates, out-of-plane domains will be found while in-plane vortices appear for a vanishing anisotropy. In the range of comparable anisotropy and dipolar energies a complex domain pattern evolves yielding a continuous transition between the two structures. The structure with equally distributed magnetic moment orientations is stable at the point where anisotropy and dipolar energies cancel each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.