Abstract

Magnetic force microscopy was used to observe the magnetic microstructure of Fe3GeTe2 at 4 K on the (001) surface. The surface magnetic structure consists of a two-phase domain branching pattern that is characteristic for highly uniaxial magnets in the plane perpendicular to the magnetic easy axis. The average surface magnetic domain width Ds = 1.3 μm determined from this pattern, in combination with intrinsic properties calculated from bulk magnetization data (the saturation magnetization Ms = 376 emu/cm3 and the uniaxial magnetocrystalline anisotropy constant Ku = 1.46 × 107 erg/cm3), was used to determine the following micromagnetic parameters for Fe3GeTe2 from phenomenological models: the domain wall energy γw = 4.7 erg/cm2, the domain wall thickness δw = 2.5 nm, the exchange stiffness constant Aex = 0.95 × 10−7 erg/cm, the exchange length lex = 2.3 nm, and the critical single domain particle diameter dc = 470 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.