Abstract

A variety of novel biomaterials have recently been developed to promote bone regeneration. However, the current biomaterials cannot accurately and effectively resist bacterial invasion. In this study, we constructed microspheres that mimic certain functions of macrophages as additives to bone repair materials, which can be manipulated as demanded to resist bacteria effectively and protect bone defect healing. Firstly, we prepared gelatin microspheres (GMSs) by an emulsion-crosslinking method, which were subsequently coated with polydopamine (PDA). Then, amino antibacterial nanoparticles obtained by a nanoprecipitation-self-assembly method and commercial amino magnetic nanoparticles were modified onto these PDA-coated GMSs to construct the functionalized microspheres (FMSs). The results showed that the FMSs possessed a rough topography and could be manipulated by a 100-400​mT static magnetic field to migrate directionally in unsolidified hydrogels. Moreover, in vitro experiments with near-infrared (NIR) showed that the FMSs had a sensitive and recyclable photothermal performance and could capture and kill Porphyromonas gingivalis by releasing reactive oxygen species. Finally, the FMSs were mixed with osteogenic hydrogel precursor, injected into the Sprague-Dawley rat periodontal bone defect of maxillary first molar (M1), and subsequently driven by magnetism to the cervical surface of M1 and the outer surface of the gel system for targeted sterilization under NIR, thus protecting the bone defect healing. In conclusion, the FMSs had excellent manipulation and antimicrobial performances. This provided us with a promising strategy to construct light-magnetism-responsive antibacterial materials to build a beneficial environment for bone defect healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.