Abstract

In this study, we investigated the effects of substituting Mn3+ for some Fe3+ in spinel lattice on the structure, magnetic properties, magnetostriction behavior, and AC impedance characteristics of cobalt ferrites. The manganese substituted cobalt ferrites (Co–Mn ferrites), CoMnxFe2−xO4, with x varied from 0 to 0.3 in 0.1 increments, were prepared by solid-state reaction. XRD examination confirmed that all sintered Co-based ferrites had a single-phase spinel structure. The average grain size, obtained from SEM micrographs, increased from 8.2μm to 12.5μm as the Mn content (x) increased from 0 to 0.3. Both the Curie temperature and coercivity of Co-based ferrites decreased with greater amounts of Mn, while the maximum magnetization (at H=6kOe) of Mn-substituted cobalt ferrites was larger than that of the pure Co-ferrite. Magnetostrictive properties revealed that the pure Co-ferrite had the largest saturation magnetostriction (λS), about −167ppm, and the CoMn0.2Fe1.8O4 sample exhibited the highest strain sensitivity (|dλ⊥/dH|m) of 2.23×10−9A−1m among all as-prepared Co-based ferrites. In addition, AC impedance spectra analysis revealed that the real part (Z′) of the complex impedance of Co–Mn ferrites was lower than that of pure Co-ferrite in the low frequency region, and the Co-based ferrites exhibited semiconductor-like behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.