Abstract

Ferromagnetic powders which are surrounded by an electrically insulating film (soft magnetic composites (SMCs)) exhibit unique magnetic properties, such as relatively low magnetic losses and 3D isotropic magnetic behavior. In some electromagnetic applications, including microwave frequency range applications, it is necessary to increase electrical resistivity without any noticeable reduction in magnetic properties. To achieve this purpose, electrically resistant materials, for example, ferrites with acceptable magnetic properties, are suitable candidates. This paper focuses on the effects of the synthesized Ni–Zn ferrite addition on the magnetic properties of the SMCs containing Ni–Zn ferrite within iron particles. The structure was studied by means of X-ray diffraction (XRD). The microstructure and the powder morphology were examined by the use of scanning electron microscopy (SEM). The magnetic measurements on powders and samples were carried out using a vibrating sample magnetometer (VSM) and an LCR meter, respectively. The results indicate that the lowest magnetic loss and the highest magnetic permeability are related to the composites with 20 wt% ferrite and 2 wt% ferrite, respectively. Also, the composites with 10 wt% ferrite show a good combination of magnetic loss and magnetic permeability in the range 0–500 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.