Abstract

Precision motion systems are the core of a wide range of manufacturing equipment and scientific instruments, and their motion performance directly determines the quality and speed of the associated manufacturing or metrology processes. Magnetically levitated precision motion systems, where the moving target is supported by magnetic forces and without any mechanical contact, provide advantages of frictionless motion, vacuum compatibility, and contamination-free operation. These features endow the magnetic levitation technology with the capability to deliver excellent overall performance for precision positioning systems. Through decades of research and engineering efforts, significant advances have been made in the actuation, sensing, design, and control of magnetically levitated precision motion systems. This paper provides an introduction to the fundamentals of the feedback control, actuation, and sensing for the magnetic levitation technology, and provides a comprehensive literature review of various magnetically levitated precision positioning systems developed over the past three decades. The final part of this paper identifies several challenges in the design and control of today’s precision motion systems using magnetic levitation and provides an outlook on the possible directions for future research and development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.