Abstract

Isothermal nucleic acid amplification (INAA) techniques such as loop-mediated isothermal amplification (LAMP) and isothermal multiple-self-matching-initiated amplification (IMSA) constitute simple and rapid approaches for the detection of pathogens. However, due to the employment of multiple primers, the detection of LAMP and IMSA products is easily influenced by high background signals from primer dimer-based nonspecific nucleic acid amplification (NSA) products. Moreover, time-consuming sample preparation steps are often required for the isolation of sufficiently pure nucleic acid prior to INAA. To address these drawbacks, hydrophobic magnetic ionic liquids (MILs) were used to rapidly preconcentrate DNA from complex biological samples followed by direct amplification by LAMP and IMSA. Careful control of the components within the isothermal buffer permitted direct addition of DNA-enriched MIL to the INAA reaction mixture, thereby circumventing tedious purification procedures that are ordinarily required prior to downstream DNA amplification. When added directly to INAA reactions, MIL solvents released metal ions that ultimately inhibited the primer dimer-mediated NSA, resulting in a flat or decreased baseline signal in no-template control samples and short threshold time for positive reactions. Using a MIL-based single droplet DNA extraction method, MIL-enhanced INAA reaction system, and a handheld 3D printed device for visual detection of the amplified product in customized tubes, we demonstrate the potential of the MIL-based approach for the onsite analysis of DNA from pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call