Abstract

NiFe2−x Bi x O4 (x = 0, 0.1, 0.2, 0.3) nanoparticles with various grain sizes were synthesized via annealing treatment followed by ball milling of its bulk component materials. Commercially available bismuth, nickel and iron oxide powders were first mixed and then annealed at 1200 °C in an oxygen environment furnace for 4 h. The samples were then milled for 2 h by high-energy ball milling. X-ray diffraction (XRD) pattern indicated that in this stage the samples are single phase. The microstructure investigation was carried out by a scanning electron microscope with maximum magnification of 30,000. The average grain size for different samples was estimated by XRD technique and transmission electron microscopy. Magnetic behavior of the samples at room temperature was studied using an alternating gradient force magnetometry. The Neel temperature of the powders was measured by a Faraday balance. Based on magnetic studies, increase in bismuth content leads to a decrease in the saturation magnetization, coercive field and Neel temperature. This can be attributed to the substitution of Bi3+ ion in the ferrite system as a nonmagnetic cation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.