Abstract

This work is devoted to a small-angle polarized neutron scattering study of the structure and magnetic properties of nickel inverted photonic crystals. Depending on the intensity of the small-angle scattering, diffraction maximums up to fourth-order reflections, which correspond to scattering from the highly ordered structures of the test samples, are observed. Several contributions to the scattering are analyzed: a nuclear contribution; a magnetic contribution; a contribution depending on an external magnetic field; and a nuclear magnetic interference, which shows a correlation between magnetic and nuclear structures. It is found that a magnetization reversal process, which was represented by a standard hysteresis curve, for weak fields was accompanied by both domain formation and coherent magnetization rotation from the field direction to directions caused by geometric structure peculiarities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.