Abstract
An important approach in the design of new environmentally friendly materials is represented by the study of analogous systems already existing in nature. In the search for new water splitting catalysts, the corresponding natural analogue is represented by the oxygen-evolving complex of photosystem II, which is a large membrane protein complex present in photosynthetic organisms. The understanding of the catalytic strategy of its active Mn4CaO5 core is important to unravel the mechanisms of water oxidation in photosynthesis and can serve as an inspiring model for the design of biomimetic catalysts based on largely non-toxic, earth abundant elements. The magnetic interactions between Mn ions are studied in the present work by means of DFT + U broken symmetry ab initio molecular dynamics within a quantum mechanics/molecular mechanics framework. The room temperature dynamics of two different structural models (i.e. with total high-spin and total low-spin ground states) was stable during the simulated time. We observed large fluctuations of the magnetic coupling constants calculated on both the structural models of the complex, causing occasionally instantaneous swapping of the ferromagnetic/antiferromagnetic coupling between the metal centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.